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We analyze angular bandwidths of extrema of the indicative surfaces describing spatial anisotropy of piezoelec-
tric (PE) and electrooptic (EO) properties of doped lithium niobate (LiNbO3:MgO) and langasite (La3Ga5SiO14)
crystals. A number of highly efficient experimental geometries are suggested, which are promising for PE and
EO devices. Our data obtained with both analytical and numerical techniques characterize angular stability of
those devices and, in particular, their angular aperture. We show that, besides of a maximal size of the electric
field-induced effects, ‘nondirect crystal cuts’ offer considerably higher angular stability of their characteristics,
when compared with that typical for ‘direct crystal cuts’ usually employed in PE and EO devices.
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1 Introduction

Recent advances in optoelectronics, acoustoelectronics and laser techniques, including development of optical
modulators and filters, piezoelectric (PE) and electrooptic (EO) devices, adaptive and other components of
telecommunications systems are much indebted to a progress of crystalline materials. It is known that physical
properties of many crystals vary considerably under external electric, magnetic, mechanical or acoustic fields,
so that the corresponding effects, such as PE, EO, magnetooptic or acoustooptic, may be promising for different
applications. The efforts in this direction have been undertaken mainly in order to (i) search for new crystals
and improve their growth technologies enabling synthesis of highly efficient optoelectronic or acoustoelectronic
materials and/or (ii) increase efficiency of crystalline materials by optimizing geometry of PE, EO or acoustooptic
coupling.

The latter point appears to be of a primary importance for a large number of low-symmetry crystalline
materials, for which relevant analysis of anisotropy of external field-induced effects and a proper choice of
geometry of PE or EO cells may considerably improve the efficiency and performance characteristics of the
devices. A number of techniques have been suggested for this aim (see, e.g., Refs. [1–12]). As a matter of fact,
they deal with so-called indicative surfaces (ISs) that describe spatial anisotropy of an external field-induced
effect subjected to analysis (the simplest example of an IS for a second-rank optical gyration tensor may be found
in the textbook [13]). One should start from a complete set of nonzero tensor components rη1...ηN (N being the
rank of the tensor) describing a given effect for some material, which are supposed to be already known from
experiment. Then one can construct the IS as a surface r (θ, ϕ) for which the distance r from the origin to a
given point defined by spherical angles θ and ϕ is equal to the size of the effect along a given direction (e.g.,
an effective EO coefficient or acoustooptic figure of merit – see [6,9,11]). Notice that spatial directions of the
external field, the propagation and polarization directions of light (or acoustic) waves should be predetermined

∗Corresponding author: e-mail: o_kushnir@franko.lviv.ua∗∗e-mail: anat@polynet.lviv.ua

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



388 O. S. Kushnir et al.: Angular stability of electric field-induced effects in crystalline materials

for each of the ISs under interest (e.g., these directions may be chosen to be parallel or perpendicular to the radius
vector of the IS – see discussion below). Then a numerical analysis of the IS would result in maximal magnitudes
of the tensorial effect and angular orientations θ0i, ϕ0i (i = 1, 2, . . . ) of these extrema, thus providing optimized
experimental geometries, which ensure maximal efficiency possible for a given crystalline material.

In relation to the above analysis, there arises an additional problem concerned with changes in size of the
field-induced effects in the vicinity of their extrema, which occur with changing field or light propagation
directions, temperature of material or frequency of the field (or the light). In fact, these factors will define angular,
temperature or frequency stability of these extrema. The simplest example is ‘angular bandwidth’ of the maximum
of a field-induced effect, which would finally govern the angular aperture of a relevant device in case if an optical
effect is dealt with. Nonetheless, the problem has not been properly considered in the literature, although it seems
to be crucial for many applications. Indeed, the direction of electric field applied to a crystal can be set with
a finite accuracy only; any laser beam is characterized by some angular divergence, while practical procedures
of orientation of single crystals can also involve some errors. Then, if a spatial extremum (a maximum if we
mean the absolute magnitude) of the effect is narrow enough and the corresponding effective tensorial coefficient
reveals ‘sharp’ angular behavior (i.e., drops significantly in a close enough angular vicinity of the maximum),
any practical utilization of such a highly efficient crystalline cut may prove to be questionable.

The goal of this work is to present a general approach for the analysis of angular stability of the size of
field-induced effects in anisotropic media. As particular examples, we demonstrate this analysis for the two
effects, PE and EO, and two different crystalline materials, MgO-doped lithium niobate (LiNbO3:MgO) and
langasite (La3Ga5SiO14). Likewise its undoped counterpart LiNbO3, LiNbO3:MgO represents a material well
known by its numerous electronic, optoelectronic and acoustoelectronic applications, and, moreover, it reveals
higher radiation hardness enabling applications that involve a powerful laser radiation [11,12,14–16]. Though
studied in much less detail, the La3Ga5SiO14 compound is known [17,18] to have very high thermal stability of
its PE properties, which can be important for different applications.

2 Basic concept and methodology

The value r characterizing any field-induced physical effect depends at least on the angular coordinate α (we use
it for conciseness instead of the set α = (θ , ϕ)), which implies spatial anisotropy of the effect, the frequency ω

of the field (or, alternatively, that of the light), and the temperature T of the material. Let the dependence r(α,
ω∗, T ∗) represent the IS constructed at certain working frequency ω∗ and temperature T ∗. Let us assume that an
angular extremum r of the induced effect, rmax, occurs at some α0 = α0(ω∗, T ∗). In a close enough vicinity of
this extreme direction, the r value as a function of α, ω and T can be expressed as a power series
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in which higher-order terms in the deviations from the α0, ω∗ and T ∗ points have been dropped. For convenience,
we rewrite Eq. (1) as

r (α,ω, T ) ≈ r (α0, ω
∗, T ∗) + γ (1)

α (α − α0) + γ (2)
α (α − α0)2

+ γ (1)
ω (ω − ω∗) + γ (2)

ω (ω − ω∗)2 + γ
(1)
T (T − T ∗) + γ

(2)
T (T − T ∗)2 + · · · , (2)

where, following the work [19], we have introduced angular (γα), spectral (γω) and temperature (γT ) dispersive
coefficients of the first (superscript ‘(1)’) and second (superscript ‘(2)’) orders.

It is important that the angular coefficient of the first order, γ (1)
α , equals to zero as far as we work in the vicinity

of the extreme direction α0 (r (α0) = rmax). Moreover, in a rough approximation one can ignore the quadratic
dispersive coefficients γ (2)

ω and γ
(2)
T , while recalling that the linear coefficients γ (1)

ω and γ
(1)
T should not in general

be equal to zero. Therefore a deviation of size of the induced effect from its extremum reads as

r (α,ω, T ) − rmax(α0, ω
∗, T ∗) ≈ γ (2)

α (α − α0)2 + γ (1)
ω (ω − ω∗) + γ

(1)
T (T − T ∗) + · · · . (3)
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In what follows, we will restrict our general approach only to dependence of the effect on the angular coordinates
and will disregard its additional dependences on the frequency and temperature. It is evident that, in any practical
situation, zero angular dispersive coefficient γ (1)

α should mean high angular stability of the effect size.
Such a statement seems to be somewhat surprising in one aspect. Indeed, it is well known from previous

studies (see, e.g., [6,12]) that the angular orientations of extrema of the ISs often correspond to so-called ‘indirect
crystal cuts’, i.e. to spatial directions different from the principal (crystallophysical) axes X1, X2 and X3 (i.e., at
least one of the angles θ and ϕ does not equal to 0, 90◦, 180◦, etc.). From the other hand, one can remind that
angular changes of many optical parameters such as, e.g., refractive indices and absorption coefficients, which
are related to a second-rank dielectric impermeability tensor, are sharp for any ‘indirect crystal cuts’. In other
words, these optical properties are critical to small angular changes in the vicinity of α0, contrary to what has
been stated for the external field-induced properties. However, this situation is because the principal axes of the
Fresnel ellipsoid necessarily coincide with the mutually orthogonal principal axes X1, X2 and X3, at least for
orthorhombic or higher crystal symmetries. Therefore the extrema in the angular dependences of the refractive
indices will be observed only for the directions X1, X2 and X3, which are associated with the direct crystal cuts,
and noncritical changes will be peculiar for their close angular vicinity. On the contrary, the field-induced effects
are described by the tensors of higher (third or fourth) ranks. The symmetry implications for these tensors are
much more complicated and they do not forbid the appearance of extrema and noncritical angular behavior for
the indirect cuts (see the results [9–11] and the analysis given in subsection 3.1).

Hence, apart from an extreme size of the induced effects associated with the indirect crystal cuts, there is
another advantage of those experimental geometries, a noncritical angular behavior of the effect in the vicinity of
its extrema. This implies rather weak changes in the size of the effect due to (accidental or intentional) deviations
from the optimized directions of external field or light propagation and polarization. This fact, which has so far
remained unnoticed, seems to be crucial in designing many PE, EO, acoustooptic or some other devices. In case
of field-induced optical effects, it should significantly increase the angular aperture of the corresponding devices.

There is also a close analogy of the phenomena considered above with practically important noncritically
phase-matched nonlinear optical geometries (see, e.g., [19–23]). In particular, it is well known that a so-called non-
critical phase matching condition can be achieved at θ0 = 90◦ and some fundamental frequency and temperature,
resulting in a zero first-order angular dispersive coefficient γ

(1)
θ for the phase mismatch function 	k = 	k(θ ).

The consequence is that the angular bandwidth of the phase-matching curve 	k(θ ) for the second harmonic
generation can be as large as several angular degrees. This differs drastically from the usual geometries of critical
phase matching, when typical tolerable deviations are of the order of angular minutes or even seconds. The
analysis in terms of this work can testify that the above noncriticality is just because the function 	k(θ ) reaches
its extremum at θ0 (notice that we have again the case of a direct crystal cut, θ0 = 90◦, as should be with the
properties associated with the refractive indices – see the discussion above).

3 ISs of PE and EO properties of LiNbO3:MgO and La3Ga5SiO14

crystals and angular bandwidths of their extrema

In this section we present both a partial analytical analysis and a complete numerical study of several typical
examples of ISs for the PE and EO effects in MgO-doped lithium niobate (LiNbO3:MgO, the point symmetry
class 3m) and langasite (La3Ga5SiO14, the symmetry class 32) crystals, with the emphasis on angular dependences
of these effects and angular stability of their extrema.

3.1 Basic relationships for the ISs We will illustrate the main principles of construction of ISs for
higher-order tensors on the example of direct PE effect described by a third-rank tensor dημν , of which internal
symmetry dημν = dηνμ strictly follows from its definition (Eη = d∗

ημν Sμν , with Sμν being the mechanical stress
tensor). Unlike the second-rank tensors of which anisotropy is completely represented by a single IS (see [13]),
the number of ISs describing anisotropy of higher-order effects is, in principle, infinite. This is because the
directions of the electric field and the mechanical strains (for the case of PE effect) or those of the electric
field and the propagation and polarization of light (for the case of EO effect) can be arbitrarily oriented with
respect to each other. Here it would be reasonable to restrict consideration only to the most practical ‘parallel’ or
‘orthogonal’ experimental geometries, for which the above mentioned directions are kept parallel or orthogonal.

One of such geometries corresponds to a so-called longitudinal PE: we consider a (spatially varying) value
of the effect for the case when both the electric field and the (compressing) mechanical stress are applied parallel
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to each other and to the direction in which we find the effect value (see [13]). If, for the sake of concreteness,
the above direction is initially defined by the principal axis X1, we would deal with the tensor component d111.
Passing to some other spatial direction specified by the direction cosines cημ, under condition of invariable
mutual orientation of the electric field and the mechanical stress, one can describe the effect value in the rotating
coordinate system X′

1X′
2X′

3 with a standard relation d ′
111 = c1ηc1μc1νdημν [13].

To track completely spatially varying effect size, it would be appropriate to use formally the same relation
d ′

111(θ, ϕ) = c1η(θ, ϕ)c1μ(θ, ϕ)c1ν(θ, ϕ)dημν , though with the direction cosines depending on the spherical co-
ordinates θ and ϕ. Now the tensorial indices ‘111’ in the scalar quantity d ′

111(θ, ϕ) are of no significance – one
could equally rightly denote them as d ′

222(θ, ϕ) or d ′
333(θ, ϕ) or omit them, since the system X′

1X′
2X′

3 rotates
all the same. The parameter d ′

111(θ, ϕ) referred to as ‘a longitudinal IS of PE effect’ [13] may now be quite
conventionally labeled as d S

EE, where the superscript ‘S’ indicates that the radius-vector r of the IS is parallel to
the direction S of piezo-induced (for simplicity, uniaxial compression) stress, whereas the same subscripts ‘EE’
symbolize the fact that the S and E directions remain the same. In other words, all the information regarding
specific character of the given IS is contained in the relations r ‖E‖ S. Of course, there exist infinitely many other
ISs of the PE effect dealing with the other experimental geometries, e.g. an IS d E

ES, for which we have r ‖ E and
the stress is kept perpendicular to the field (S ⊥ E).

As specific practical examples, below we will consider only several ISs: d S
EE (r ‖E‖ S), d E

ES (r ‖E, S ⊥ E) and
d p

ES (r ‖ p ⊥ E, r ⊥ S, S ⊥ E) for the effective PE coefficient, and δ	i
EE (r ‖ E ‖ i), δ	E

Ej (r ‖ E, E ⊥ j) and δ	i
Ei

(r ‖i, E ⊥ i) for the electrically induced optical path change due to the EO effect (see, e.g., [27]). The latter
parameter refers to the unit crystal thickness and unit electric field and is defined as δ	 = −reffn3

eff + 2(neff −
1)deff, where reff and deff denote the effective EO and PE coefficients for a given experimental geometry (e.g., deff

is given by one of the ISs just listed), and neff implies the effective refractive index specified for this geometry.
Notice that the optical path change is concerned, in the first place, with interferometric applications of the EO
effect (cf. with the electrically induced phase retardation addressed to in the work [11]). As for the conventional
notations of these ISs not explained earlier, the vector p is normal to both of the S and E directions, while i and j
are the polarization vectors of respectively the extraordinary and ordinary light waves in crystal (the propagation
vector k being orthogonal to i and j). Notice also that the EO ISs under our interest are just those associated with
possible practical influence of piezoelectricity upon electrooptics.

Omitting all the calculation details (see [11,25,27]), we present only final formulae for the ISs mentioned
above. The first example concerned with the symmetry class 3m (i.e., lithium niobate crystals) is

d S
EE(θ, ϕ) = −d22sin3θsin3ϕ + (d31 + d15) sin2θcosθ + d33cos3θ, (4)

d E
ES(θ, ϕ) = −d22sinθcos2θsin3ϕ + d31cos3θ+(d33 − d15)sin2θcosθ, (5)

d p
ES(θ, ϕ) = −d22cos2θcos3ϕ, (6)

δ	i
EE(θ, ϕ) = [

r22sin3θsin3ϕ−(r13+2r51)sin2θcosθ − r33cos3θ
] (

n−2
o sin2 θ + n−2

e cos2 θ
)−3/2

+ 2
[ (

n−2
o sin2 θ + n−2

e cos2 θ
)−1/2 − 1

][−d22sinθcos2θsin3ϕ + d31cos3θ

+ (d33 − d15)sin2θcosθ
]

, (7)

δ	E
Ej(θ, ϕ) = −(r22sinθsin3ϕ + r13cosθ )n3

o

− 2(no − 1)
[

d22sinθcos2θsin3ϕ − d31cos3θ − (d33 − d15)sin2θcosθ
]

. (8)

The second example for the case of symmetry class 32 (i.e., langasite crystals) is given by

d p
ES(θ, ϕ) = 1

2
d14 sin 2θ − d11 cos2 θ sin 3ϕ, (9)

δ	i
Ei(θ, ϕ) = (

r41 sin 2θ + r11 sin2 θ sin 3ϕ
) (

n−2
o sin2 θ + n−2

e cos2 θ
)−3/2

+ 2
[ (

n−2
o sin2 θ + n−2

e cos2 θ
)−1/2 − 1

]
(

1

2
d14 sin 2θ − d11 cos2 θ sin 3ϕ

)

, (10)
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Here dlm (l ≡η = 1 . . . 3 and m ≡μν = 1 . . . 6) and rlm (l ≡ημ = 1 . . . 6 and m ≡ν = 1 . . . 3, since rημν = rμην)
are respectively the tensorial coefficients of the inverse PE and EO effects written in the matrix notation, whereas
no and ne imply the refractive indices for the ordinary and extraordinary light waves. We are also to stress
that Eqs. (4)–(10) are a good illustration of the fact that the higher-order physical effects in crystals are always
dependent on both the polar (θ ) and azimuthal (ϕ) angles, even in optically uniaxial crystals. This is unlike the
natural optical anisotropy which is uniquely described by a single polar angle between the wave vector k of light
and the optic axis X3.

Relations (4)–(10) show that the angular orientations θ0 and ϕ0 of extrema of the field-induced effects are
determined by competition of different tensor components dlm (or rlm). Closer inspection of formulae (4)–(10)
also testifies that, in general, the θ0 and ϕ0 angles can differ from 0, 90◦ or 180◦. Of course, besides of material-
dependent magnitudes and signs of dlm (or rlm), the orientation of the extrema must be governed by the general
symmetry requirements. According to the von Neumann’s principle, the IS should involve all the symmetry
elements of a point class describing a given material (3m and 32 for the cases of lithium niobate and langasite).
In particular, the orientations ϕ0i of different extrema (numbered by the index i) should necessarily be linked by
the rotations associated with the three-fold axis X3. The extrema can occur at either θ0 = 0 (180◦) or θ0 
= 0. Here
the former case is degenerate, while the latter corresponds to three different angles ϕ0i divided by the angular
distance 120◦. Moreover, if the extremum indeed occurs at θ0 
= 0 in the upper semisphere (0 < θ0 < 90◦),
then the symmetry of the class 3m would dictate availability of another extremum in the lower semisphere
(90◦ < θ0 < 180◦ – see also specific examples of ISs shown in figure 1(a), (b), figure 3(a), (b), and figure 4(a),
(b)).

Of all these considerations, the most important is that the extrema of the field-induced effects can occur at
least at θ0 
= 0, 90◦, 180◦. Irrespective of the ϕ0 value, this clearly corresponds to what we call as ‘indirect cuts’.

3.2 Analytical analysis of the PE ISs and their angular bandwidths Now let us analyze the IS given
by Eq. (4), using the general approach to angular stability of the field-induced effects presented in Section 2.
The extrema of this IS may be found from the conditions of zero partial derivatives, ∂d S

EE(θ, ϕ)/∂θ = 0 and
∂d S

EE(θ, ϕ)/∂ϕ = 0. These lead respectively to

sin θ = 0, a tan2 θ + b(ϕ) tan θ + c = 0, (11)

sin3 θ cos 3ϕ = 0, (12)

where a = d31 + d15, b(ϕ) = 3d22 sin 3ϕ and c = 3d33 − 2d31 − 2d15. Applying standard verifying mathematical
procedures, we find that one of the possible maximums appears at the spherical angles θ0 = arctan�(b(ϕ) +
√

b2(ϕ) − 4ac)/(2a)� and ϕ0 = 90◦. Taking the experimental dlm values measured in the study [15] for the
MgO-doped lithium niobate (d15 = 66.6, d22 = 19.2, d31 = 0.4 and d33 = 4.1 pm/V), we obtain θ0 ≈ 61.4◦. In
other words, the extremal value of the PE effect takes place just for an indirect crystal cut. The maximum itself,
d S

EE,max, is equal to 38.2 pm/V. Notice that these figures agree fairly well with the optimal angles θ0, ϕ0 and the
IS maximum derived using a further numerical analysis (see subsection 3.2 and table 1 below). Remembering
that we deal here with the angular set α = (θ , ϕ), we are to introduce the two angular dispersive coefficients of
the first order, γ

(1)
θ and γ (1)

ϕ , which should be zero under these conditions.

The calculations of the second-order angular dispersive coefficients γ
(2)
θ , γ

(2)
θϕ and γ (2)

ϕ , using second-order
partial derivatives of the function d S

EE(θ, ϕ) (see Eqs. (1) and (3), yield in

2γ
(2)
θ = ∂2d S

EE(θ, ϕ)/∂θ2 = − 1
2 [(3a − c) sin θ + b(ϕ) cos θ ] sin 2θ − [b(ϕ) sin θ + c cos θ ] cos 2θ,

γ
(2)
θϕ = ∂2d S

EE(θ, ϕ)/∂θ∂ϕ = −3b(ϕ) sin2 θ cos θ cot 3ϕ, 2γ (2)
ϕ = ∂2d S

EE(θ, ϕ)/∂ϕ2 = 3b(ϕ) sin3 θ. (13)

With the experimental values of PE coefficients, we get γ
(2)
θ ≈ −83.4, γ

(2)
θϕ = 0 and γ (2)

ϕ ≈ −58.5 pm/V. Of
course, the sufficient condition of an extremum of function of two variables θ and ϕ expressed in terms of the
dispersive coefficients (γ (2)

θ γ (2)
ϕ − 4[γ (2)

θϕ ]2 > 0) is fulfilled and, moreover, here we deal just with a maximum

(γ (2)
θ , γ (2)

ϕ < 0).
Now let us proceed to analyzing the angular bandwidth of the spatial extrema appearing on the IS. The first

question concerns a relevant quantitative parameter to be chosen in order to characterize this bandwidth. As a
practical way out, one can use a solid angle around the maximum, in which the size of the effect, as described
by the IS, drops down not more than a certain predetermined amount, when compared with the maximal value
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(e.g., not more than 10 per cent). In particular, the angular width of laser beams is often specified in such a way
(see, e.g., [24]). In a similar manner, one can also define the appropriate angular region δθ = θ − θ0 (at a given
ϕ value, e.g., at the optimal ϕ0 one) and the region δϕ = ϕ − ϕ0 (at an optimum θ0 value), where the effect is
‘stable’ enough, e.g. not less than 90 per cent of the maximum. Then the formula

r (θ, ϕ) − rmax(θ0, ϕ0) ≈ γ
(2)
θ δθ2 + γ

(2)
θϕ δθδϕ + γ (2)

ϕ δϕ2 + · · · , (14)

which strictly follows from Eq. (3), may be applied, with r (θ, ϕ) = 0.9rmax(θ0, ϕ0). Using the dispersive coeffi-
cients known for the IS d S

EE(θ, ϕ), we get δθ ≈ 12.3◦ (at ϕ0 = 90◦ and δϕ = 0) and δϕ ≈ 14.6◦ (at θ0 ≈ 61.4◦
and δθ = 0), again in fair agreement with the data obtained with the numerical methods (δθ ≈ −12 ÷ +13◦ and
δϕ ≈ ±15◦ – see table 1 below). Notice that the relevant figures are very high. In fact, one can say of a huge
stability of the maximums of the PE effect described by the IS d S

EE(θ, ϕ), since one looses only 10 per cent of
the effect size while the electric field direction deviates as large as ∼ 25 − 30◦. Our further analysis will prove
that the same remains true of the other ISs, thus confirming practical advantages of the indirect cuts of crystals
revealing maximal PE or EO effects.

In principle, a similar analysis can be performed for another IS d p
ES(θ, ϕ) of the PE effect (see Eq. (6)i).

However, any general analytical analysis of angular bandwidths of the IS maxima is hindered in many aspects. It
is dependent on both the point symmetry class and specific values of the tensor coefficients, which are different
for different materials. Moreover, this analysis becomes very complicated in many cases. For instance, this is
true of the IS d E

ES(θ, ϕ) given by Eq. (5), since the condition of zero partial derivative over the θ variable results
in a cubic equation with parameters. For this reason, further on we will consider stability of the IS maxima, using
simpler and more universal numerical approaches.

3.3 Numerical results for LiNbO3:MgO Our analysis of angular stability of the PE and EO parameters
for the LiNbO3:MgO crystals has been based on the experimental results for the PE constants [15] (see the data
introduced above), the EO coefficients (r13 = 10.9, r22 = 7.5, r33 = 34.3 and r51 = 34.9 pm/V [26]), and the
room-temperature refractive indices measured at the wavelength of 633 nm (no = 2.2841 and ne = 2.1994 –
see [26]). Basing on those data and using our original software Calc3D, we have constructed the ISs described by
Eqs. (4)–(8). Then the angular intervals δθ and δϕ where the effects are stable enough have been determined, while
applying computer-based methods of analysis and using well-known techniques of stereographic projections of
the ISs (e.g., the Wulff nets).

Figure 1 shows the ISs d S
EE and d E

ES (panels (a) and (b)) of the PE effect in LiNbO3:MgO, their stereographic
projections on the X1X2 plane (panels (c) and (d)), and less detailed stereographic projections with the marked
regions around the IS extrema, where the effect size is not less than 90 per cent of the extrema (panels (e) and
(f)). Numbers in figure 1, figure 3 and figure 4 indicate the values corresponding to different contour lines or
the extrema of the ISs. Notice that the ISs can acquire both positive and negative values, which are indicated
respectively in red and blue in the color versions of figure 1, figure 3 and figure 4 (see also marking of the contour
lines). Table 1 lists extremal values peculiar for the ISs of the PE effect, including the IS d p

ES not represented in
figure 1, along with corresponding optimal spherical angles θ0 and ϕ0. This provides valuable information about
optimized experimental PE geometries for the lithium niobate crystals, which are characterized by the highest
PE efficiency (see figure 2) and can be employed, e.g., while constructing PE transducers.

Closer examination of the PE ISs proves that, in case of the transverse PE effect (E ⊥ S), the efficiency of the
indirect crystal cut (see figure 2(b) and the second row in table 1) is about 1.5 times higher than that corresponding
to the most efficient of the direct-cut geometries (E||X2 and S||X1). The advantage of indirect crystal cuts is even
larger in case of the longitudinal PE effect: here the best direct cut (E||S||X2 – see figure 1(a)) exhibits twice
as lower efficiency when compared to the optimal indirect cut (see figure 2(a) and the first row in table 1). This
advantage will become significantly greater if we pass from the amplitude-related parameters such as E, d, etc.
to power-related ones which are quadratic in the former parameters.

To characterize quantitatively angular bandwidths of the extrema of the ISs for LiNbO3:MgO, we have applied
the technique of stereographic projections (see figure 1(e) and (f)). As mentioned above, we have determined
angular ‘regions of stability’ of the extrema of the induced effects, using the criterion that the effect in the vicinity
of its extremum should not drop down by more than 10 per cent. In particular, the regions of angular stability of the
longitudinal and transverse PE effects are marked by shading respectively in panels (e) and (f) of figure 1. Assume

iNotice that, as a rare exception, here the PE effect achieves its angular maximum for the direct crystal cuts (e.g., at θ0 = 0◦ and ϕ0 = 180◦
– see also the numerical data in table 1).
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Fig. 1 (a), (b) ISs of PE effect in LiNbO3:MgO crystals; (c), (d) their stereographic projections; (e), (f) stereographic
projections with shaded angular bandwidths of the IS extrema (see explanations in text). Panels (a), (d) (e) and (b), (d), (f)
correspond respectively to longitudinal (E ‖ S) and transverse (E ⊥ S) PE geometries described by the effective coefficients
d S

EE and d E
ES. All figures are given in the units of pm/V.
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Fig. 2 Optimal geometries of LiNbO3:MgO crystal samples providing the highest PE efficiency for the cases
of longitudinal (E ‖ S, panel (a)) and transverse (E ⊥ S, panel (b)) effects, with indicated directions of electric
field E and induced PE strain S. X1, X2, X3 are the principal axes.

Table 1 Extremal values of ISs for the PE and EO effects in LiNbO3:MgO and La3Ga5SiO14 crystals, their angular orientation
(θ0 and ϕ0), and angular regions δθ and δϕ where the size of the effects is not less than 90 per cent from the extremal value,
as found using the numerical techniques.

IS Size of the effect, pm/V θ0, ang deg ϕ0, ang deg δθ , ang deg δϕ, ang deg

Lithium niobate
d S

EE 38.2 (–38.2) 61 (119) 90, 210, 330 (30, 150, 270) –12÷13 ±15

d E
ES 29.6 (–29.6) 129 (51) 90, 210, 330 (30, 150, 270) –12÷11 ±21

d p
ES 19.2 (–19.2) 0, 180 (0, 180) 60, 180, 300 (0, 120, 240) –18÷18 ±9

δ	i
EE –531 (531) 50 (130) 90, 210, 330 (30, 150, 270) –18÷14 arbitrary ϕ

δ	E
Ej –229 (229) 46 (134) 30, 150, 270 (90, 210, 330) –18÷16 ±15

Langasite

d p
ES 6.7 (–6.7) 15 (165) 30, 150, 270 (90, 210, 330) –15÷17 ±12

δ	i
Ei 24.8 (–24.8) 126 (54) 30, 150, 270 (90, 210, 330) –21÷20 ±11

now that the optimal angular orientation of a sample is kept with respect to only one of the spherical angles (i.e.,
we have θ = θ0 and ϕ 
= ϕ0 or, vice versa, θ 
= θ0 and ϕ = ϕ0). Let us find the corresponding maximal allowed
deviations (bandwidths) δϕ or δθ for the other angle, which ensure that the effective PE coefficient remains not
less than 90 per cent of its extremal value. In case of the longitudinal effect (the IS d S

EE, E ‖ S), the allowed
deviation δθ in the polar angle is –12≤ δθ ≤ 13◦ when the ϕ angle is fixed at, e.g., ϕ0 = 90◦, whereas the
bandwidth δϕ for the azimuthal angle is equal to ±15◦ when θ = θ0 = 61.0◦ or 119.0◦ (see table 1).

Notice that the positive and negative azimuthal deviations are always equal to each other. This is a result of
symmetry of the ISs, which has to involve all the symmetry elements of the class 3m characterizing lithium niobate
(i.e., a three-fold axis X3 and three mirror planes intersecting at this axis). At the same time, the positive and
negative polar deviations δθ are asymmetric. Indeed, with the angles as large as ∼ 10÷20◦, we leave a relatively
narrow angular vicinity of an extemum point θ0 where the curve d S

EE(θ ) is still symmetric and, moreover, there is
no point symmetry element that would impose the d S

EE(θ ) curve to be symmetric relative to the point θ0, except
for the cases of θ0 = 0 or 180◦ (see the results for the IS d p

ES in table 1).
The case of transverse piezoelectricity (the IS d E

ES, with E ⊥ S) is characterized by the figures δθ = –12÷11
at ϕ = ϕ0 = 30◦ and δϕ = ±21.0◦ at θ = θ0 = 51.0◦ or 129.0◦ (see table 1). Hence, the stability of the IS extrema
with respect to the polar angle is almost the same in the both cases, although their azimuthal angular bandwidths
differ by the factor of about 1.4. Of course, a more general and complicated practical situation can happen when
a deviation from the optimal spatial direction of extremum has both θ - and ϕ-components nonzero. Then the
problem of finding relevant allowed angular deviations δθ and δϕ may be solved using the Wulff net.

Figure 3 shows the ISs of the EO effect in LiNbO3:MgO (panels (a) and (b)), their stereographic projections on
the X1X2 plane (panels (c)–(d)), and less detailed stereographic projections with the regions of angular stability
marked (panels (e)–(f)). Here panels (a), (c), (e) and (b), (d), (e) correspond to the electro-induced optical path
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Fig. 3 (a), (b) ISs of electro-induced optical path changes due to EO effect in LiNbO3:MgO crystals; (c),
(d) their stereographic projections; (e), (f) stereographic projections with shaded angular bandwidths of the IS
extrema (see explanations in text). Panels (a), (d), (e) and (b), (d), (f) correspond respectively to EO geometries
described by the effective parameters δ	i

EE and δ	E
Ej. All figures are given in the units of pm/V.
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Fig. 4 (a), (b) ISs of PE effect and electro-induced optical path changes due to EO effect in langasite crystals;
(c), (d) their stereographic projections; (e), (f) stereographic projections with shaded angular bandwidths of
the IS extrema (see explanations in text). Panels (a), (d), (e) and (b), (d), (f) correspond respectively to PE
geometry described by the effective parameter d p

ES and EO geometry described by the effective parameter δ	i
Ei.

All figures are given in the units of pm/V.
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changes δ	i
EE and δ	E

Ej appearing due to the transverse (k ⊥ E) and longitudinal (k ‖ E) EO effects, respectively.
The regions shaded in panels (e) and (f) of figure 3 are again those in which the size of the effective EO parameters
δ	i

EE and δ	E
Ej remains not less than 90 per cent of the extremal values. Here the main quantitative features of

angular bandwidths of the exrema of the longitudinal EO effect are much the same as for the case of PE effect in
lithium niobate (see figure 1 and table 1).

In case of the transverse EO effect, the deviation δθ allowed for the polar angle reveals the largest asymmetry
(from −18◦ to +14◦ – see table 1) associated with a peculiar shape of the IS δ	i

EE (see also figure 3(b)). It is also
interesting that, for the polar angle fixed at the optimal θ0 value (θ0 = 50◦ or 130◦) or in its vicinity, the size of
the transverse EO effect does not depend at all upon the azimuthal angle ϕ (figure 3(e)). The appropriate crystal
cut is characterized by both the largest size of the EO effect (see table 1) and extremely high angular stability
and so it could be suggested for manufacturing EO cells. One can also remark that the angular optical aperture of
those cells should be extremely wide. Of course, Eqs. (7), (8) and (10) defining the δ	 parameters do not directly
account for sample thickness changes happening when the light propagation direction deviates from the normal
to crystal slab, although this effect can be compensated using sample surfaces of more intricate shapes. Finally,
a comparison of angular bandwidth parameters of table 1 associated with the extrema of the PE and EO effects
testifies that the latter effect is somewhat more stable.

Still more instructive is to compare the angular regions where the effect changes its size by less than 10 per cent
for the cases of direct and nondirect crystal cuts. As examples, we have calculated the above ‘stability regions’ for
the PE and EO ISs d S

EE and δ	E
Ej in the vicinity of the angular point θ1 = 90◦ and ϕ1 = 90◦, which corresponds to

one of the direct cuts. Apart from notably less sizes of the effects (d S
EE(θ1, ϕ1) = 19.2ii and δ	E

Ej(θ1, ϕ1) = 89.0 –
cf. with the relevant data of table 1), the ‘stability regions’ are equal only to δθ = 1.6◦, δϕ = 8.6◦ for the IS d S

EE
and δθ = 1.8◦, δϕ = 8.6◦ for the IS δ	E

Ej. These values are essentially less than the bandwidths for the indirect
cuts shown in table 1. In other words, those of the direct crystals cuts which do not correspond to the IS extrema
are at a clear disadvantage when compared with the optimal nondirect cuts. The only drawback of the nondirect
crystal cuts is obvious practical difficulties of their preparation and orientation.

3.4 Numerical results for La3Ga5SiO14 To illustrate spatial anisotropy of the PE and EO effects in
langasite and angular bandwidths of their extrema, we have chosen only two examples, the IS d p

ES of the
transverse PE effect and the IS δ	i

Ei of the EO effect linked with the electro-induced optical path changes (see
Eqs. (9) and (10). As for the necessary experimental data, we have used the PE coefficients d11 = −6.3 and
d14 = 3.7 pm/V [25], the EO coefficients r11 = 2.63 and r41 = −1.86 pm/V [25], and our data for the refractive
indices (no = 1.8988 and ne = 1.9117) at the room temperature and the light wavelength 633 nm.

Figure 4 shows the mentioned ISs (panels (a) and (b)), their stereographic projections on the X1X2 plane
(panels (c)–(d)), and the same projections with angular bandwidths of the extrema marked (panels (e)–(f)). The
relevant quantitative parameters are gathered in table 1. As above, we have assumed the optimal experimental
geometry to be kept exactly with respect to one of the spherical angles, while the deviation (i.e., orientation
error) to be concerned with the other angle only. As follows from the corresponding δθ and δϕ data shown in
table 1, the angular bandwidths of the extrema of both the PE and EO properties of langasite are comparable in
their magnitude and quite similar to the relevant data reported above for the lithium niobate doped with MgO. In
other words, we have some grounds to believe that the angular bandwidths of the spatial extrema of the electric
field-induced effects in different crystals should be similar and always very wide.

Notice also that the indirect crystal cuts of langasite, which are characterized by both the highest efficiency
and a wide angular bandwidth of extremal values of the induced effects, can find their applications related to
efficient PE energy conversion and EO coupling. In this relation, high angular stability of the effect size is of
a primary practical importance, if one reminds of inevitable errors in orientation and manufacturing of crystals
samples for the PE or EO cells.

4 Conclusions

In this work we have analyzed the ISs describing spatial anisotropy of external field-induced physical effects in
crystals and the angular bandwidth of those ISs in the vicinity of their extrema, with especial emphasis on the PE

iiWe are to remark that the ISs d p
ES(0◦, 60◦) (see table 1) and d S

EE(90◦, 90◦) acquire the same value 19.2 pm/V, which is nothing but the
PE coefficient d22 for the lithium niobate doped with MgO (see Eqs. (4) and (6)).
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and EO effects. A general theoretical approach is presented that considers the width of the mentioned extrema
as a function of spatial orientation angle α of the field (or laser beam), the temperature T of crystalline material,
and the frequency ω of the field (or light). The angular, temperature and frequency dispersive coefficients are
introduced that characterize quantitatively the behavior of the effects when the parameters α = (θ , ϕ), T and ω

change.
The angular stability of spatial extrema of the electric field-induced effects is analyzed in more detail, using

both the analytical and numerical techniques. The specific examples worked out by us include a canonical lithium
niobate (LiNbO3 doped with MgO for increasing laser irradiation hardness) and a less known La3Ga5SiO14

(langasite) crystal. The ISs of the effective PE coefficient and the electrically induced optical path change due
to EO effect have been dealt with. A number of optimal geometries for the PE and EO effects are listed, which
enable constructing the most efficient PE and EO cells for opto- and acoustoelectronics, using lithium niobate
and langasite crystals.

We have shown that the experimental geometries associated with the extrema of the ISs reveal a significant
advantage. Namely, the changes in the effect size turn out to be noncritical with respect to angular deviations of
the orientations of electric field, wave vector and polarization of light. The angular bandwidths of the IS extrema
associated with one of the spherical angles (azimuthal or polar) are shown to be as wide as ∼ 20 ÷ 40◦, provided
that the other angle (polar or azimuthal) is fixed at an optimal value corresponding to the extremal effect size.
This conclusion has been testified to be at least qualitatively independent of a crystalline material (LiNbO3:MgO
or La3Ga5SiO14) and a field-induced effect (PE or EO) under test. In particular, if a case of optical effects is
dealt with, this would mean an extremely wide angular aperture of EO devices based upon the nondirect cuts of
crystalline materials.

As a consequence, the data of our analytical and numerical analyses for the both examples of crystals (see
table 1) show that the experimental geometries associated with the extrema of anisotropic electric field-induced
effects are definitely superior to all of the other geometries. In addition to the best performance characteristics
linked to the size of the effect, they manifest unprecedented angular stability of that effect size, which is almost
one order of magnitude higher than that peculiar for the ‘direct crystal cuts’ not revealing the IS extrema. Since in
the majority of cases the extrema of the ISs correspond just to the indirect crystals cuts, the latter should manifest
serious advantages over the direct crystal cuts. This situation may be compared to a drastic difference between
the cases of usual and noncritical phase matchings for the nonlinear optical frequency conversion processes.
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